
www.manaraa.com

www.manaraa.com

LIB RAHY
OF THE

U N I VER.5ITY
OF ILLI NOIS

510.84
K6r

no. 30 1 -307
cop. 2

www.manaraa.com

The person charging this material is re-

sponsible for its return on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

OEC 1 3 ttff

APR 6flEpO

FEB 1 A.m.

L161— O-1096

www.manaraa.com

Digitized by the Internet Archive

in 2013

http://archive.org/details/algorithmfordela301tumm

www.manaraa.com

www.manaraa.com

www.manaraa.com

J I i e J

i

301
Report No

'
301

0*

7«aoo -

AN ALGORITHM FOR DELAY CHECKING
COMPUTER DESIGNS

by

Jay Merrill Tummelson

January 13, 1969
THE UBRAHl Of .,

^td 17 1969

www.manaraa.com

www.manaraa.com

Report No. 301

AN ALGORITHM FOR DELAY CHECKING
COMPUTER DESIGNS*

by

Jay Merrill Tummelson

January 13, 1969

Department of Computer Science
University of Illinois
Urbana, Illinois 6l801

* This work was supported in part by the Advanced Research Projects
Agency as administered by the Rome Air Development Center under
Contract No. US AF 30(602)411+4 and submitted in partial fulfillment
of the requirements for the degree of Master of Science in Computer
Science, February, 1969.

www.manaraa.com

www.manaraa.com

>, 301-30/

ACKNOWLEDGEMENT

The author wishes to express sincere appreciation and

gratitude to all those persons whose assistance made this manuscript

possible. To Professor D. L. Slotnick, Thesis Advisor, who first

aroused my interest in the field of Design Automation and then

suggested delay checking as a possible thesis topic. To Mr. Arthur

B. Carroll, whose assistance in proofreading and rewording sugges-

tions proved invaluable to the final content of this paper. To

Mr. D. 0. Pearson, who was an invaluable source of knowledge in

Design Automation, specifically in the area of delay checking. To

Mrs. Frieda Anderson and Mrs. Mildred Pape, who devoted themselves

to typing this manuscript as though it were their own. To

Mrs. Shirley Brown, Mrs. Diana Higgs and Mrs. Sharon Hardman who

typed the lettering for the flowcharts and who would not settle for

less than perfection. Finally, to Mrs. Nancy Stone, Mrs. Dianna

Smith, and Mr. Jim Stevens, who painstakingly drew the boxes,

diamonds, circles, lines, and arrow on the flowcharts.

www.manaraa.com

www.manaraa.com

IV

ABSTRACT

The problem of delay checking computer designs is discussed

along with its relation to the design automation problem as a whole.

The ILLIAC IV design automation package is described as an example of

systems in general. The remainder of the paper describes in detail

the delay check algorithm and computer program developed by the

author.

Detailed description of the data formats, internal structur-

ing of data and flowcharts of the program are included for those

interested in the application of the algorithm.

www.manaraa.com

www.manaraa.com

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 The Design Automation Problem 1

1.2 The ILLIAC IV Design Automation System 1

2. THE DELAY CHECKING PROBLEM 8

3- THE DELAY CHECK ALGORITHM 12

3-1 Development of the Algorithm 12

3«2 General Information lU

3.3 The Compiler 15

3-4 The Delay Propagator 22

h. THE DELAY CHECK PROGRAM 23

APPENDIX

1. FORMAT OF PACKAGE TYPE INFJT 27

2. DESCRIPTIONS OF THE FORMAT OF THE GREX,
FLX, and COMPONENT ARRAYS 28

3- DETAILED FLOWCHARTS OF PROGRAM 31

LIST OF REFERENCES 52

www.manaraa.com

www.manaraa.com

1. INTRODUCTION

1.1 The Design Automation Problem

The function of design automation is to provide designers

of electronic equipment assistance in the process of designing and

manufacturing this equipment. Since much of the work associated

with designing and manufacturing equipment is long, tedious "busy

work and "because people in the computing industry are constantly

looking for ways to reduce cost and improve schedules, the use of

computers to aid in the design of equipment came quite naturally to

the industry. At the optimum level the design automation system

permits the designer to input the logic equations which define the

machine he wants and the system will generate finished artwork

masters, drill tapes, and prints necessary to manufacture the

equipment. Unfortunately, not all design automation systems are

capable of doing the entire job. Exactly how much of the job can

be done by a system is a function of the equipment being designed,

the parts available to implement the equipment, the allowable

tolerance in the design and, of course, the design automation

system itself.

1.2 The ILLIAC IV Design Automation System

The ILLIAC IV design automation system is one of those

which is not capable of doing the entire job. One of the major diffi-

culties is that ILLIAC IV is implemented with the new emitter coupled

logic (ECL) for which design specifications and wiring rules are

www.manaraa.com

not completely defined. Naturally, since the designers can not

define rigid rules for the use of ECL, a program can not be "written

to do this. The system must then provide for human interface to

correct error situations not anticipated by the designer.

This problem has occurred many times before (for example, when

transistors first appeared or when printed circuits were first used),

and as soon as designers were able to set up rigid rules then design

automation was able to catch up with hardware state of the art. The

problem is that we are using techniques developed for pre-ECL

components to develop an ECL design automation system. It will not

work, and we know it, so we must allow for error detection and

correction.

Because of the problems described above there are two

types of programs in the ILLIAC IV design automation system. There

are programs which do the actual computations necessary to design

the equipment and there are programs which check the output from

the computational programs at various stages to see that all the

rules set up to insure correct usage of ECL are being followed. If

errors are found, then the checking program will list them so that

the designer may correct them before allowing the system to finish

B design. This human interplay is an unfortunate but necessary

part of this system, and accordingly the system was designed around

..spect. It is, therefore, possible for many part of the system

to accept input from previous stages of the system as well as input

generated by the designers to update or correct the design. This

www.manaraa.com

means that after the designer corrects an error he can use the system

to insure that he has done so correctly without introducing other

errors.

The ILLIAC IV design automation system is a set of

interconnected computer programs together with provisions for human

evaluation and possible updating of intermediate results. A flow-

chart for the entire system follows and is followed by a short

description of what is done at each step.

www.manaraa.com

IO0IC

TROUP

TRANSCRIPT IMI
10 WIA

r •

i

i

_.J

mrrxi and
•1 load chkt

program

Lfc
CORRECT
ERRORS IN
PIN LI8T

uxnc
ASSIORMERT

PROGRAM

loci-;

partttion-
dio program

aorr/igni
RIPORT
PROGRAM

redeftnk
design abb
~TAPT over

ERROR(Sl VISUAL CHECK
Of REPORT

by designers

I

ERROR(S) CORRECT ERRORS
AND RETURN
TO SYSTEM

PLACEMENT

0ROARTZER

ROUTER

PRINTERPLOT

».- EHRR

DW0R(8]

ERBQR(S) POST-PROCE880R

visiia:

nmiGN

DELAY-CHECX

<
gerber/drill

nPERATION

MAWTACTtmE
or

BOARD

ILLIAC IV Design Automation System

www.manaraa.com

LOGIC DESIGN GROUP : The designers make the decision on the

specification of the piece of equipment and generate the logic

equations which define the machine.

TRANSCRIPTION TO DATA CARDS : The design equations are converted

to the format required by the program and are punched in data cards

to be input to the program.

SYNTAX AND LOAD CHECK PROGRAM : This program checks the key punched

pin list data for proper format. The program also performs a load

check for every source pin in the pin list. All errors are noted

so that they may be corrected.

CORRECT ERRORS IN PIN LIST : Errors noted above are corrected and

the cards are once more input to the syntax and load check program

to insure all errors have been corrected.

LOGIC PARTITIONING PROGRAM : This program partitions groups of

logic into boards. It is capable of working at the functional

level as well as at the physical package level.

LOGIC ASSIGNMENT PROGRAM : This program makes assignment of logic

to physical I.C. packages. At the same time it modifies all fields

in the records affected by the above logic assignment.

SORT/USER REPORT PROGRAM : Sorts the records of the pin list file as

needed by following programs. The second part of this program gen-

erates user reports to be checked by designers for error detection

and correction.

www.manaraa.com

3UA: OF REPORT BY DESIGNERS : At this point, the designers

scan the report and check to see that the partitioning and assign-

ment has been done correctly. If not, corrections are made and the

design process restarted at the assignment, partition, or sort/user

report programs. In the case of severe errors, they may wish to

redefine their design and start all over.

lCEMENT : This program places the components on the board and

also arranges the boards on the backplane.

ANIZER : This program determines which pins are to be wired

together and the sequence in which they are to be wired.

UTER: This program routes wires between the pins as specified by

the organizer. The output is a record for each segment of the

routed wire.

:ITER PLOT : This program produces a rough sketch on a line printer

of the router solution.

- ROCESSOR : This program checks the routed wire solution for

-rence to designer defined wiring rules. It also checks the

Dading on each net for correctness and calculates wire delay for

net. Errors flaged by the post-processor should be corrected

signer. He then decides how far back to go (if the errors

evere enough, he may have to alter the original design equations

art ovr

www.manaraa.com

DELAY-CHECK
: This program calculates time delay between latches

to be checked by the designer for correctness. This is the part of

the system that this paper deals with in detail.

ARTWORK: This program checks the router solution for physical

errors, produces tapes for artwork generation on a Gerber Plotter,

and produces tapes for driving a numerically controlled drill for

drilling the required holes on the production boards.

^ER^L^mATOT: This section produces the artwork on a

Gerber plotter and drills holes on the boards.

^FACTUR^OOC^: ihis section actually finishes the board.

This includes placing of components, printing of wires, and final

testing of the board.

www.manaraa.com

2. THE DELAY CHECKING PROBLEM

In a synchronous machine the signals are retimed at a

fixed clock rate. This is accomplished by gating the signals into

memory elements (latches) after the signal has gone through several

combinatorial gates. The amount of combinatorial logic allowed

between latches depends upon the speed of the logic and the length

of the clock interval. Below is shown an example net which begins

at latches LI, 12, and L3 and ends at latch iA.

www.manaraa.com

In the example above when the clock "turns on" the latches

LI, 12, and L3, the signals "stored" there are propagated through

the combinatorial logic until the "result" finally reaches Ik where

it will be stored and "wait" until the next clock pulse comes along

to send it from lh through the next set of combinatorial logic.

This is where delay checking comes in. Designers must

know how long it takes for the signal to get from one set of latches

to the next. In the example above, the signal from LI must go

through five gates before it reaches L^+; however, the signal from

L3 may go through only one (though it can also go through two,

three and. four gates to get to Lh) . The example above can be used

to show the two kinds of errors that designers try to avoid- Suppose

the algorithm for calculating the delay along a. net was

D = W + C
2

where W is the number of wires and C is the number of components

.

Then we can find the following delays:

Longest delay from LI to L4: 6 wires + 5 components

D
x

= 6 + 25 = 31

Shortest delay from L2 to L^: 5 wires + h components

D
2

= 5 + 16 = 21

Shortest delay from L3 to L^: 2 wires + 1 component

D
3

- 2 + 1 . 3

www.manaraa.com

10

Further, suppose that the time between clock pulses is 20

and the length of a pulse is 5 (the units here are not important,

so they have been left off). As shown below, the circuit is ill-

behaved for two reasons:

1) The time from LI to LU is too long, since the signal

gets to iA after the clock pulse to send it on is

turned off;

2) The time from L3 to Lk is too short, since the signal

gets to Lk during the first clock pulse and thus "runs

ahead" of what it should do.

CL0CK_

Ll-LU

L3-IA

L2-IA

20

31

21

Signals are started through net when clock goes on.

Notice that the shortest path from L2 to iA, as shown above,

gets to iA at the right time. That is, after the pulse that started

on its way and before the next pulse was turned off. For a

design to be correct, ther-.- must be no nets which exhibit either

bad traits the above net shows. Deviations will produce

in the equipment.

www.manaraa.com

11

For designs which do not use ECL, delay checking is an

easier task. Non-ECL logic speeds are approximately 20-30 nsec

Compared to wire speeds (the best wiring runs about 2 nsec/ ft.)

this is relatively slow. So slow, in fact, that in computing the

delay for a net, the delay along the wires may be effectively

ignored. Algorithms to calculate delay would merely need to count

the number of components and multiply by the delay per component.

With designs for machines using ECL (such as ILLIAC IV), the prob-

lem is not so simple. Since ECL component speeds are about 2 nsec,

which .is very close to the best wire speeds, delay along wires can

no longer be ignored in calculating the dleay for a net. This means

that algorithms for delay calculations for designs using ECL will

be more complicated than those for non-ECL.

With ECL, counting the components along a path as has

been done, will not given an accurate approximation to the delay.

For example, a net with few components but long wires may take

longer than a net with many components but very short wires.

www.manaraa.com

12

3- THE DELAY CHECK ALGORITHM

3.1 Development of the Algorithm

The development of the algorithm described in this paper

out of the need to delay check the board designs of ILLIAC IV.

Since ECL is so new, the problems associated with using ECL are also

quite new. Because of this, there was no algorithm available to do

the job. One had to be developed.

There were many factors which had to be taken into account

when deciding what the best algorithm would be. Development time

was one of the more important factors. The program had to be work-

ing as short a time as possible. Efficiency was considered, but

only as a secondary element to time. Therefore, the algorithm had

) be simple and easy to convert to a computer language. The

1 used in writing the program was Burrough's Extended ALGOL.

Operations required by the algorithm had to be ones available in

that language. Finally, since much of the rest of the ILLIAC IV

design automation system already existed, the input data format

was fixed. Exactly what data would and would not be available to

delay check program was fixed, and could not be changed. With

:ontraints in mind, work began to develop the best possible

algorithm.

www.manaraa.com

13

First of all, it was decided that the basic element in

the model would be a functional element. This was chosen for its

simplicity. It would be much too difficult to break up the com-

ponent each time a. delay calculation had to be made. The components

would be broken into functional elements once, and from that point

on, everything would be based on functional elements. Now comes the

question of how to store all the information in a data structure.

Because of storage limitations, information would have to be packed.

That is, many pieces of information would be put into one word of

memory. This introduces complexity, because packed information must

be unpacked to be used. But, since much of the information is binary

in nature (a flag indicating true/ false, or on/off), the ineffi-

ciencies of storing one data bit in a 48-bit computer word could

not be tolerated. Along with this it was decided to store all

information in one array, each element taking as many words in the

array as necessary. This brings up the final consideration. Should

the record length for the elements be fixed or variable? Fixed is

simpler and easier to work with but wastes a lot of space. Because

boards are very large (as many as 1000 functional elements), and

because some elements require much more space for information than

others, it was decided to use variable length records. Each

record would start on a word boundary but could be any number of

words long.

www.manaraa.com

11+

The record for an element contains backward pointers to

all elements which have sources which feed this element directly,

forward pointers to all elements having loads for the sources in

element, and other information about the element; such as,

type, number of reference (forward and backward), and delay infor-

mation. Using these pointers, the program is able to follow

signals through the nets, adding up wire and component delays as

it goes from latch to latch. By doing this, maximum and minimum

delay times can be calculated for all nets.

The data structure consists of variable length records

of packed data. Internal pointers allow for tracing of nets both

brward and backward in the circuit. (The actual format of these

structures is given in Appendix 2.)

3.2 General Information

If a program is to be written for a computer to perform

delay check function, an algorithm must be devised which models

each net internally so that the delay can be calculated using both

component and wire delays.

This paper presents such an algorithm and describes a

program which was written based on the algorithm.

www.manaraa.com

15

The algorithm consists of two parts:

1) The compiler, which creates the internal model

of all the nets, and

2) The propagator, which uses the model to

propagate the delays along the nets to find

total delay from latch to latch.

3.3 The Compiler

The task of the compiler, as stated above, is to generate

the internal model of the nets. The model was designed with the

idea in mind that the input data would contain the following infor-

mation about every pin in the net.

1) The signal name on the wire connected to this pin.

2) The component name or connector pin name associated

with this pin.

3) What type of component this pin is on (or if this

is a. connector pin, it indicates this).

h) Which pin on the component this is.

5) Whether this pin represents a source or a load

to the signal.

6) The delay along the wire from the source to each

of its loads.

www.manaraa.com

16

The model consists of several lists: one main information

net list and several peripheral supporting lists. The main list con-

:ord for each functional element in the net. A given

imponent package may be a functional element in itself or it may

ontain several functional elements. The criterion for defining a

functional element is based on its output. All outputs from a

functional element -mist come directly from the same gate

within one component. If the output comes from a gate, then through

a NOT, and then out of the component, this is also taken to mean

irectly from the gate. Shown below are four ILLIAC IV component

packages with explanations of the functional element breakdown in

each.

DILOOU

In this package, since both outputs come from the same

through a NOT, the other straight out), the entire package

mctJ -ial element.

www.manaraa.com

IT

DILDC

In this package there are two functional elements

(separated by broken line). Each has two outputs, one the actua]

value of the element, the other the NOT of this value.

DIL011

In this package there are also two functional elements

.

Notice that they share one of the inputs.

www.manaraa.com

18

DIL007

In this package there are four functional elements, each

sharing one common input and having but a single output.

The records are of variable length and contain the follow-

ing information about the functional element:

1) Is this a latch?

) Is this a connector pin and, if so, a pointer to

a special connector pin list, and is this an input

or output connector pin?

3) If this is not a connector pin, how many input

pnals are there and how many output signals?

Pointers for each input signal to the clement

that the source is on.

) The wire delay from the source to the load for

www.manaraa.com

19

6) Pointers for each output signal to the elements to

which they go.

Shown below is a partial net, together with the main infor-

mation net list that, the compiler would generate for it. The net is

drawn at the functional element level for simplicity and the compiler

puts four pieces of information in each word in the list.

Ll.
A j

L2

L3

LU

& L5

Lo

www.manaraa.com

20

WORD
ADDRESS

(LI)

(L2)

(L3)

(I)

(ID

1

2

3

5

6

7

8

9

10

11:

(III) 12:

13:

1U:

(IV)

16:

17:

(V) 18:

20:

INFORMATION

latch, not connector pin, inputs, 1 output

6 (Pointer to Element I) , , ,

latch, not connector pin, inputs, 1 output

6 (Pointer to Element I) , , ,

latch, not connector pin, inputs, 2 outputs

9 (Ptr. to II), 15 (ptr. to IV) , ,

not latch, not connector pin, 2 inputs, 2 outputs

(Ptr. to LI), 2 (Ptr. to L2), Delay from LI

Delay from L2

9 (Ptr. to II), 12 (Ptr. to III), ,

not latch, not connector pin, 2 inputs, 2 outputs

6 (Ptr. to I), k (Ptr. to L3), Delay from I,

Delay from L3

(Ptr. to III), 15 (Ptr. to IV), ,

not latch, not connector pin, 2 inputs, 2 outputs

6 (Ptr. to I), 9 (ptr. to II), Delay from I,

Delay from II

13 (Ptr. to V), 21 (Ptr. to LU), ,

not latch, not connector pin, 2 inputs, 2 outputs

9 (Ptr. to II), k (Ptr. to Le), Delay from II,

lay from L3

(Ptr. to V, 25 (Ptr. to L6), ,

not latch, not connector pin, 2 inputs, 1 output

(Ptr. to III), 15 (Ptr. to IV), Delay from III,

lay from IV

23 (Ptr. to L5), , ,

www.manaraa.com

21

WORD
ADDRESS INFORMATION

(iA) 21: latch, not connector pin, 1 input, outputs

22: 12 (Ptr. to III), , ,

(L5) 23: latch, not connector pin, 1 input, outputs

2k: 18 (Ptr. to V), , ,

(L6) 25: latch, not connector pin, 1 input, outputs

25: 15 (Ptr. to IV), , ,

Using the above list, the program can start at latches

LI, L2, and L3, and by following pointers go from element to element

until it reaches iA, L5, and L6. As the program goes along it keeps

track of the delay along each path. It will know when it gets to

each of lA, L5, and L6 what the corresponding delays are.

Notice that signal names (shown as capital letters)

completely disappear in the information list.

The input to the compiler would then need to be one record

for each "pin" in the design. The pins in the example are shown

as small black dots. Thus, in the above example, the input would

consist of only 17 records. Each record would contain the signal

name, logic component name, a flag indicating whether this is the

source or a load for the signal, if this is a. load the "wire delay"

from the source, and the type of element this pin is on.

The compiler takes the input records and first sorts by

signal name. The source for each signal is distinguished from its

loads and pointers are formed from the source to each load and from

www.manaraa.com

22

each load to the source. The updated records (with pointers included)

are now sorted by logic element name. Now, by extracting the pointers

for each signal and discarding signal names, the list shown above

can be generated.

It should be noted that in an actual application of this

algorithm (as in the one described later in this paper), the process

can be made more complicated by allowing more complicated components

than used above. The basic algorithm, however, would still be the

same.

The Delay Propagator

The propagator is very simple, given the list generated by

the compiler. All that need be done is that a copy of the list be

made for each of two computations. Both the maximum delay time and

the minimum delay time from latch to latch must be calculated. If

each calculation begins at input connector pins (a list of which can

be easily generated by the compiler) and follows each through the

until output connector pins are reached. At this point all

delays will be known and output of this information can be gener-

ated. The output would describe the delay at each latch from the

previous latclv

For nets which start on a latch on one board and reach

the next latch on a different board, special interfacing must be

provided for. This is merely a data handling problem and will not

be . ;ed in this paper.

www.manaraa.com

23

k. THE DELAY CHECK PROGRAM

The program following the above described algorithm was

written to run on a B5500 in Burrough's Extended ALGOL. It is

intended to run after the Post-Processor portion of the design

automation package furnished by Burroughs to aid in the design of

ILLIAC IV. For this reason the program is, in some places, more

specifically orientated to the problem of designing ILLIAC IV than

a general delay checking program should be.

The compiler takes its primary input from a file generated

by the Post-Processor. This is the Extended Pin List File (PLF).

This file consists of card image records and should contain all

information for one board and no more. Each record represents one

pin on the board as is formatted as follows:

col. 9-1^ Package type

col. 16-19 Component identification

col. 21-23 Pin number

col. 25-36 Signal name

col. 33 Source/ load key

col. 65-68 Delay (on source pins only)

The package type is a six-character alphanumeric code which

designates on which of the several types of modules known to the pro-

gram this pin is. A list of all such modules should be provided as

explained in Appendix 1. Among the possible codes should be one for

connector pins and one for latches. If the code is not one of the

allowable codes, the program will print an appropriate error message

and terminate.

www.manaraa.com

2h

The component ID is a unique four- character alphanumeric

name given to each component on the board. It is used to group the

pins by component for processing by the program. Since this name

can be any four- character string, no check is made for correctness

and all names are ass ed to be correct. One exception to this is

that connector pins will have as their component ID a name of the

type: P-xx where xx is a number from 00 to 99*

The signalname is a twelve- character alphanumeric name,

unique for each signal in the system. The signalname will be the

name associated with the delay on all output connector pins.

The source/load key is the character S or L. As would

be expected, the S indicates that this is a source pin and the L

indicates a load.

The delay is the amount of wire delay on each source sig-

nal. This is the total delay for the signal from the source to the

furthest load downstream. It was decided that, even though it is

not absolutely correct, this delay would be used as the delay time

from the source to each load. Since there is only one delay asso-

ciated with each source, it will be present only on records which

are marked as sources.

The program is written as a series of sequential program

segments. Each one performs some transofrmation on the data files

until the input has been completely changed into the form necessary

for delay propagation. A general flow diagram for these segments,

along with a short description of what each does, follows.

www.manaraa.com

25

READPACKAGETYPES READPINLISTFILE SORTBYSIGNALNAME

CAPT1 TIYPT r\U .4 SORTBYCOMPONENTIDoUKl lsi 1 Urju.oi»i£jiM j. o ^

1 r

n.T™-RPATP^T.Y fe SCANFLXp

FINDSOURCEFORPINS

A
I

I

1L

PROPAGATEDELAY
~~1

READPACKAGETYPES reads, from file PACKAGE, card image

records which describe the package types allowed on the "board being

delay checked. The record also will contain the number of pins in

the package and the name, or pin ID, of each pin.

READPINLISTFILE reads card image records from file

PINLISTFILE. Each record contains information for one pin on

the board. This segment checks for errors in package types and

pin names.

SORTBYS IGNALNAME not only sorts by signal name but also

puts the source(s) for each signal ahead of the loads.

FINDSOURCEFORPINS puts a pointer in GREX (see Appendix 2)

for each load to its source; and for each source puts the number

of loads on that source.

www.manaraa.com

26

SORTBYCOMPONENTID does a pseudo-sort by component name,

source or load, and pin number. The arrays COMF1 and COMPJ are

formed to contain the correct order of GREX as though it were

sorted. The sort is done first by component name, then by putting

sources ahead of loads, and finally by putting the pin numbers in

numerical order.

SORTUTTOELEMENTS separates the element(s) in each com-

ponent, keeping a count of them for the entire board. It generates

an array called COMPONENT (see Appendix 2) with one entry for each

component. Each entry contains the package type and lists the ele-

ment number(s) of the element(s) in this component.

GENERATEFLX generates the FLX array (see Appendix 2) which

is the complete model of the board. This is the array which is

used to propagate the delay.

SCANFLX initiates delay propagation and calls

PROPAGATEDELAY to do the actual calculations. This is the part

which must be executed once for maximum delay(s) and once for

minimum delay(s).

PROPAGATEDELAY is a recursive procedure which calculates

the delay from one element to the next by following pointers through

the FLX array.

Detailed flowcharts of the program are in Appendix 3 for

those interested; and Appendix 2 describes, in detail, the format

of the arrays used by the program to build the internal model of

•

www.manaraa.com

27

APPENDIX 1

FOSMAT OF PACKAGE TYPE INPUT

First card: cols 1-4 Number of types - 1

cols 5-10 Connector Pin Code

cols ll-l6 Latch Code

Type cards: cols 1-6

col 8

Repeat this 5

column field un-
til all pins are
defined (this may
take two cards)

.

Type Code

Number of elements in this package

Number of pins in this package - 1

Pin name

Pin position on package

www.manaraa.com

28

APPENDIX 2

DESCRIPTIONS OF THE FORMAT

OF THE

GREX, FIX, and COMPONENT ARRAYS

www.manaraa.com

29

pM cq
o

EH
CQ
KH
I*

CM

fi

£3

o w

h a

H fa
p H

O
CQ

CQ Op p

§

o
P

CQ
EH
H

P
P

P

«

K
o

WOh

H
P

O
P

C/T

PO
H

J?

8R

cm

LT\

rH

o

BH
PL,

o
P

PO
P
POP

H
P

K

9

Ko

o

o
o

^

Kr

tr

9
On

LT\

H
P

o

g
<c

«O
P

H
o
p

W OP

H

s

1o
p

1o
P

$

'A

M
P*

\9

CM
-H-

CM

3
8

^
£

n

«

oP

P CQ

worn

H
PM

O
P

1o
P

Rl

Fl

ft

W
P

o

P

P

o
PM

CQ

po^
P CQ

>H

P
<:

CQ
K
|j Eh

M H
O O
PM PM

o

§

aa P Eh

P^
Eh CQ

CQ S
H
CQ

P EH

Seh
p <s

rH CQ

p <o o
E M
o §
CQ h-

II

o

>H

. a t-1

M P £
EH P Eh

Eh Eh Eh

CQ CQ CO

SScj
H M H

rH rH

II II

hlhWtOE\o o p o
CQ P P P

O
•H
-P
cd
•rl

>
<D

U

P

www.manaraa.com

30

J* J*

2 <
>

9

W
K} C

oo

«

w

tfr-

55M

-

Rj

oo

K

O
Oh

CO
O

3

o

CO

eg
O k5w

«^e

H J CO
O

I

—

oo
EnO

§
Eh

2 Cr<

II CO

SqK 5
D H
CO H
»a
O II

1-3

CO Pt,

w
C
o
•Hp
a]
•H
>

^>
<:

<;

oo

^

8

9

www.manaraa.com

31

APPENDIX 3

DETAILED FLOWCHARTS OF PROGPAM

www.manaraa.com

[
MAIS j

32

INITIALIZE
ELEMENT
DELAY

INITIALIZE
IPINS

AND JPINS

ONES 4- LARGEST
INTEGER

ZERO .-0

READ NUMBER
3F PAGKASETTFES
CONNECTOR P»

TYPE
LATCH TYPE

I .-0

READ

INFORMATION
FOR

PACKAGE(L)

•;::.

- I

UTCH TYPE
- I

REM I'.. XAOETWEfl

www.manaraa.com

33

SKIP 1

RECORD ON

THE PLE

J «-0

READ PACKAGETYPE,
COMPONENTXD[I,J],

PINTD, SIGNALNAME[I,J]
SLKEY FROM PLF

END OF file;parity ERROR

ERROR:
NOT ONE OF

ALLOWED TYPES

READPINLISTFILE

www.manaraa.com

PUT TYPE
NUMBER AHD
SLKEY INTO
ORECCI.J]

K -

PIN NUMBER
IS PUT INTO
GREXfl.J] Vh

J - J+l

He

K - K+l

Yes

COLUMN[I]
- 511

ERROR:

NOT ONE OF
ALLOWED PINS

ERROR:

PARITY ERROR
ON PLF

I - 1*1

! LOOP! U-

COLUMNfl] >-

J-l
KNDOFFI

NUMBEROFPOWS
«- I

Ul

TOO MANY
RDB ON

PLF

(go toA

www.manaraa.com

I «-0

L <- J

NSTOP .- J

M <- I

I
N *- NSTOP

L .- N

N «-N+l

NSTOP <-

N > COLUMNfM'TX. No

K *-M

L .-N

SORTBYSIGNAUiAKF,

www.manaraa.com

GO TO

I LOOP

No

No

M .-M+l

J «- J+l

Yes

I - 1+1

No
GO TO

MLOOP

Yes

SWITCH
INFORMATION

FOR [K,L]

WITH [I, J]]

www.manaraa.com

37

LASTSOURCE *-0

NAME .- BLANK

PIHCOUNT *-

K .-0

L «-

I «-

SREX[I,J]

.- ONES

f GO To\
{

ALPHA]

LOADCOUNT «-

LOADCOUNT+1

PUT
LASTSOURCE
AND GRUNCH

IN GREX[I,J]

» GRUNCH <-

No
NAME <-

SIGNAIMAME
[I,J]

POT LOADCOUNT
AND GRUNCH
IN GREX[K,L]

LASTSOURCE «-

[I,J]
LOADCOUNT <-

K <-I

L <- J

4

PINCOUNT «-

PUJCOUNT+1
PINNAME

[PINCOUNT]
*- NAME

PUT LOADCOUNT
AND GRUNCH

IN LAST
GREX[K,L]

FINDSOURCEFORPINS

www.manaraa.com

£

J .-0

CCHPIfl.J] .-I

CCWJ[I,J] »-J

J 4- J4l

I - 1*1

J -

,, . . -,

www.manaraa.com

TjjS'
^Tp,ci a \
source akd

•>JP,Q1 NOT s

^SJ/^
1 m

L ~ N

i '

P - P

Q - S

IS

'coMprp,si"
= COMP|P,Q]

rP^Slt[P,Q]
BOTH SOURCES

OP BOTH

P-COMPI[I,J]

Q~COMPJ[I,J]

N - NETOP

R- COMPI[M,Nl

S- C0MPJ[M,N1

JTO
'COMP[R,Sj
<COMP[P,Q]

YES.
P - K

Q - S

IS

'PIN(R,S)
< PIN(P,Q)

YEsI

P - R K - M

L - NQ- 6
NX)OLUMN[Ml ;>

N9

www.manaraa.com

\o

SWITCH

fI,J] WITH
[K,L]

Yes

M <- M+l

J - J+l

Yes

I - 1*1

Yes

/ GO To\

No

No

J' GO TO \
"K LOOFM J

No J GO TO \
"•I LO0PI1)

www.manaraa.com

'.1

COMPONENT -

COUNT- -1

ELEMENT -

COUNT- -1

COMPID-BLANK

I -

K«-COMPI[I,Jl

L-COMPJ[I,Jl

PUT COMPONENT-
COUNT AND

PIKPCSTTION
IN GREX[K,L]

-UU_

YES

COMPID -

COMPONENT

ID[K,L]

THISTYPE -
WHAT TYPE

THIS IS FROM
GREX[K,L]

COMPONENT -

COUNT -
COMPONENT -

COUNT t 1

COMPONT[CGMP-
ONENCOUNT] -
THISTYPE
(WITH ONES
PADDED^

SORTINTOELEMENTS

www.manaraa.com

1*2

C0MPH

BLAn

put pin

HUMHB H
COMPOUENT

YES

M - 1

EmMEHT-
coubt -

ELEMgHT-
couinvi

put eument-
COUNT IBTO

M*h COMPONENT

M ~ M + 1

PUT COMPONENT
COUNT AND

PINP06ITION
INTO

ZERO

ARRAY

f 00 TcA

www.manaraa.com

J <- J+l

Yes

I <- 1+1

CrLUMNHTV Ho

PUT PTNCUT[01

INTO

GREX[K,L]

PUT PTNCNT[1]

INTO

GEEX[K,L]

PUT PIKCNTr2]

INTO

GREX[K,L]

PUT PINCNT[3;

INTO

GREX[K,L]

/GO To\
-H JLOOPll

PHICNT[C]

PUJCNTrO]
• 1

PIT!'".'

PTNCNTfl]

PINCNT[2]

PINCNT[2]

4 1

pinci
;

t- PIN'':: '
]

< 1

www.manaraa.com

uu

WBV

NUMBER OF

BOWS -

KUMBER OF
» 1

part*
y:- ;

REX{ NUMBER OF

ROWS, COLUMN!

M*HFOFROWS]1
- ONES

JiC_

COLUMN! NUMBER

OF ROWSl-
COLUMNt NUMBER

OF ROWSl * 1

I -

I
J -

I
K-COMPIfl.Jl

L-COMPJ[I,Jl

GO TO
i

[MLOOP1

J

'.nnwnTL*

www.manaraa.com

SET END OF

FORWARD ADDS

AT 1/3 POINT

YEL' YES,
weraiPTP[Ml

-WOHDPTR[M]
-1

SET END OF

FORWARD ADDS

AT 2/3 POINT

SET END OF

backward adds

at 1/2 point

PINS PEP TT.TTMEMT

[M,Ol - 1

ljGlxpointefi

- PREFLX[

M,N]

N -O

FLXPOIUTER -

FLXPOINTER

t 1

«—

r

SET 2IJD HALF

OF PRETLX

TO ONES

NO
GO TO

MLOOP1

M -

FUNCTION -
FUNCTION + 1
ELEMENT [FUN-

TIONj -
FLXPOINTER

PUTTHE NUMBER
OF FORWARD &

_^ BACJWARD AIHffiE
IN PREFLX

www.manaraa.com

U6

'

.

•*

ra-iS

Yes

'

"TPE -
M

COW
Yes

Yes Yes

ICOUNT -
DJCCWNT-l

OUTCOUNT .-

OUTCOUHT-.1

PUT COMPONENT
NUMBER AND
FLXPOINTER IN

[NPINSflNCOUNT

PUT COMPONENT
NUMBER AND
FLXPOINTER IN

OUTPINSfOUTCOUNTj

PUT S/L KEY
AND INCOUNT
J PREFUC[0,0;

PUT S/L KEY
AND OUTCOUNT

Di PREFLX[0,0]

WORDPTRfM] -
FORWARDPTR[Ml

BACKWARDPTR
-.9

PINSPERELEMENT
[M,0] -

PINSPERELEMENT

fM,ll .-

M ~M*1

Yes,

www.manaraa.com

PUT THE ELEMENT

NUMBER AMD PIN
POSITION INTO

PREFLX

UPDATE
FORWARDPTR[M],

WORDPTR[M],
PIKSPERELEMENI

[M]

M .-
Yea

Yes

NSUB -r-

PLACE IN GRE>

THAT THIS
SOURCE IS AT

NSUB *- NSUB+1
PIND *- WHICH

PIN
COMP «- WHICH

COMP

P *-l

PCCMP <-

WHICH ELEMENT
OF THIS CCMP

IS THIS

P41

No

M *- M+l

Yes

BACKWARD
PTR[M] .- 1

SET END OF
FORWARD

ADDRESSES
TO 2/3 POINT

UPDATE
WORDPTRfM]
IF NEEDED

M <-M+l

NSUB -
PLACE IN GREX
THAT THIS
LOAD IS AT

YES

M -

SET END OF
FORWARD

ADDRESSES
to V2 p°ra'r

BACKWARD-
PTR[M] <- 2

M <- M+l

Yes

www.manaraa.com

1*8

PCOHP -
WHICH ELEMENT
OF THIS COMP

IS THIS

PUT THE
ELEMENT NUMBER

AND DELAY
VALUE INTO

PREFLX

UPDATE
WORDPTR[M],

BACKWARD [Ml

,

PINBPER-
ELEMENT[M]

J - J*l
. Ye.T

J > COLUMNf I]^> » I .- 1*1

www.manaraa.com

1*9

ONE 12 - 1023

IPIN - THE
Ith INPUT

PIN NUMBER

FORWARDPTR <- 2

ENDFLAO *-

MARK DELAY(I)
AS "USED"

GO TO

GAMMA

WORDPTR +-

WHERE THIS
PIN IS IN

FLX

GO TO
FSW(FORWARDPTR]

FORWARDPTR
*- 2

(FSWF2]
J

(
FSWf3]

j

FORWARDPTR
- 3

FORWARDPTR
*-3

WORDPTR <-

WORDPTR+1

FLXPTR - WHICH
ELEMENT

FLXPTN «- WHICH
PIN

FLXPTR*- WHICH
ELEMENT

FLXPIN.- WHICH
PIN

• •-

GO TO
FSW[FOR-
WARDPTR]

FLXPTR «- WHICH
ELEMENT

FLXPIN .- WHICH
PIN

No

>

SCANFLX

www.manaraa.com

50

0PA3ATE-
DELAY

No

FORP ~ 2

WORP •- FIJCPTR

. Yai

FLXPTR
I FEXPDI
\ DELAY J

Yee

FPms •- the

NUMBER OF
FORWARD

ADDRESSES

No

/isV
Sthzs a ^"v

\c0hkbctor^\ pdi /
FPTHS 4-

1 1

I
IPINS «- WORD
THAT FLXPUI
POINTS TO

U

IPINS .- 1st

OR 2nd HALF
OF WORD THAT
FLXPD) POINTS

Tfi

' r

COMPOTE DELAY
FOR PIN THAT
FLXPIN POINTS

TO

< r

ADD 1 TO
NUMBER OF

PUS DONB^FOR
THIS ELEMENT

No
DLAY - THE
MAX (OR MTNl
OF DELAY ON

ALL INPUTS TO
THIS ELEMENT

www.manaraa.com

FLXPTER <-

NEXT ELEMENT
TO SEND DELAY

TO

FLXPN <- WHICH
PIN IN

ELEMENT TO
SEND DELAY

10.

PROPAGATEDELAY

FLYPTER, FLXPN,
DLAY

www.manaraa.com

52

LIST OF REFERENCES

[1] Crowley, T. H., "Computers as an Aid to the Design and
Manufacture of Systems," 19&3 IEEE International Conv. Rec,
vol. 11, pt. k, pp. 4-51.

[2] Gill, S., "The Use of Computers in Designing Computers,"
Industrial Research, vol. 15, pp. 159-l63> April, 1962.

[3] Gordon, W. L., "Data Processing Techniques in Design Automation,"
i960 Proc. EJCC , pp. 205-209.

Gray, S. R. and Kisch, R. N., "A Progress Report on Computer
Applications in Computer Design," 1956 Proc. WJCC

Harming, W. A. and Mayes, T.L., "Impact of Automation on
Digital Computer Design," i960 Proc. EJCC , pp. 211-232.

Kurtzberg, J., "Computer Mechanization of Design Procedures,"
Proc. of the Detroit Conf. of the AIIE , October, 196U.

[7] Leichner, G. H., "Designing Computer Circuits with a Computer,"
J . ACM , vol. k, pp. 1I+3-II+7, April, 1957-

Warshawsky, E. H., "Design Automation," Datamation , pp. 25-28,

June, 1964.

www.manaraa.com

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA R&D
(Sacurttr cl.aaltlc.tlon ot mi,. body of .b.lmel .ml lnd..h,g wwflto mu.« b, nfrad Than >/,. .„,.)/ r.po,, ,. rlm..„l,dJ_

I originating ACTlvi TY CCorporate author)

Department of Computer Science
University of Illinois
Urbana, Illinois 6l8oi

3 REPORT TITLE

ia. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

AN ALGORITHM FOR DELAY CHECKING COMPUTER DESIGNS

4. DESCRIPTIVE NOTES (Typ, ot rwport and Inclumlr, data,)

Research Report
S AUTHORISI (Firat mm, middl, initial, laat nam,)

Jay Merrill Tummelson

ft. REPORT DATE

January 13, 1969
•a. CONTRACT OR GRANT NO.

U6 -26 -15 -305
6. PROJECT NO.

USAF 30(602)4144

10. DISTRIBUTION STATEMENT

7a. TOTAL NO. OF PACES

57

76. NO. OF REFS

ORIGINATOR'S REPORT NUMBER(S)

DCS Report No. 301

»6. OTHER REPORT NOISI (Any other number, that may b, aaalonod
thla rapott)

Qualified requesters may obtain copies of this report from DCS.

II. SUPPLEMENTARY NOTES

NONE

13. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

Rome Air Development Center
Griffiss Air Force Base
Rome, New York 1344-0

The problem of delay checking computer designs is discussed along with
its relation to the design automation problem as a whole. The ILLIAC IV

design automation package is described as an example of systems in general.

The remainder of the paper describes in detail the delay check algorithm and

computer program developed by the author.

Detailed description of the data formats, internal structuring of data

and flowcharts of the program are included for those interested in the applica-

tion of the algorithm.

)D ,'°?..1473 UNCLASSIFIED
Security Classification

www.manaraa.com

UNCLASSIFIED
Security Classification

KEY WORDS

ILLIAC IV Design Automation System

Delay Check Algorithm

ROLE W T

UNCLASSIFIED
Security Classification

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

